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Abstract
It is shown that Hamilton’s principle of classical mechanics can be derived
from the relativistic invariance of the generalized spacetime Fisher information
corresponding to the statistical description of results of measurement of the
coordinates and the motion in space by means of the probability density and
probability density current.

PACS numbers: 45.20.Jj, 01.55.+b, 02.50.Cw

1. Introduction

Hamilton’s principle of classical mechanics [1–5] (sometimes called the principle of stationary
or least action) is a very powerful integral principle making it possible to derive equations of
motion of classical mechanics. Till now, this principle has been understood as one of the basic
postulates of classical mechanics [2–5].

The aim of this paper is different. We want to show that Hamilton’s principle can be derived
from two general requirements. The first one—statistical description of the measurement of the
coordinates and the motion in space by means of the probability density and probability density
current—is related to the statistical character of results of measurements. The second one
is the relativistic invariance of the corresponding generalized spacetime Fisher information,
important characteristics of the probability distributions known from mathematical statistics.

The importance of the Fisher information [6] as the starting point to obtaining the most
important equations of motion of physics was realized in [7–9]. However, Hamilton’s principle
and its derivation from the spacetime Fisher information, the role of the probability density
and probability density current and their representation in a way convenient for transition to
classical mechanics were not discussed in [7–9]. For this reason, the main ideas making it
possible to derive Hamilton’s principle from the generalized spacetime Fisher information are
discussed in this paper.
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2. Probability density

We begin our discussion with measurement of the coordinate x. For the sake of simplicity, we
consider the one-dimensional case only.

Results of repeated measurements of the coordinate x can be characterized by the mean
values

〈x〉 =
∫

xρ(x, t) dx, (1)

〈x2〉 =
∫

x2ρ(x, t) dx, (2)

where the integration is carried out over the whole space, ρ(x, t) � 0 is a normalized
probability density∫

ρ dx = 1 (3)

and

lim
x→±∞ xnρ = 0, n = 0, 1, 2. (4)

Normalization condition (3) and equation (4) are assumed to be valid at all times t.

3. Uncertainty relation and Fisher information

Now, we perform integration by parts with respect to the variable x in equation (3) and get
[6, 10–15]

xρ
∣∣∞
x=−∞ −

∫
x

∂ρ

∂x
dx = 1. (5)

Using equation (4) the first term in this equation equals zero and we get∫
x

∂ρ

∂x
dx = −1. (6)

This simple result has interesting consequences. Putting

u = x
√

ρ (7)

and

v = 1√
ρ

∂ρ

∂x
, (8)

the Schwarz inequality

(u, u)(v, v) � |(u, v)|2 (9)

for the inner product (u, v) = ∫
u∗v dx yields the ‘uncertainty’ relation [6–15]

〈x2〉I � 1. (10)

Here,

I =
∫

1

ρ

(
∂ρ

∂x

)2

dx (11)

is the so-called Fisher information, important characteristics of the probability distributions
known from mathematical statistics and information theory [6–9, 16].
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4. Probability density current

For physical systems, we must give not only the probability density ρ(x, t) but also some
quantity describing the motion of a given system in space. It is also needed for describing the
transition between two mutually moving inertial systems.

By analogy with continuum mechanics, it is possible to introduce the probability density
current j related to the ‘velocity’ v [12–14]

j = ρv. (12)

The quantities ρ and v can be in general expressed in terms of two real functions s1 = s1(x, t)

and s2 = s2(x, t) as follows:

ρ = e−2s2/η, (13)

v = 1

m

∂s1

∂x
. (14)

Here, m is the mass of the system and η > 0 is a constant given by the normalization condition
(3). The last equation has the form analogous to that between the velocity v and momentum p
in classical mechanics v = p/m, where p = (∂S/∂x) and S is the classical Hamilton action.
It is seen that instead of ρ and j , the state of the system can be described by the functions s1

and s2 (see also [10–15]).
We note that a similar approach to writing ρ and j in terms of functions s1 and s2 was

successfully used in quantum mechanics where the wavefunction ψ can be written as [10–15]
(see also [17–19])

ψ = e(iS1−S2)/h̄, (15)

where functions S1 and S2 are real functions having similar meaning as s1 and s2. The
corresponding quantum-mechanical probability density and probability density current can
then be expressed in the form

ρ = e−2S2/h̄, (16)

j = h̄

2mi
[ψ∗∇ψ − (∇ψ)∗ψ] = ρ

m

∂S1

∂x
(17)

analogous to equations (12)–(14). In the limit of classical mechanics, the probability density
(16) can be approximated by the Dirac function δ(x − xcl), where xcl = xcl(t) is the classical
trajectory and S1 becomes the classical action S [12, 15]. Analogous transition will be
performed in section 6.

5. Generalized uncertainty relation

To derive a generalized uncertainty relation for s1 and s2 we first substitute equation (13) into
equation (11). The resulting formula for I has the form [12, 15]

I = 4

η2

∫ (
∂s2

∂x

)2

e−2s2/η dx. (18)

Now we note that

I � I ′, (19)
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where

I ′ = 4

η2

∫ [ (
∂s1

∂x

)2

+

(
∂s2

∂x

)2 ]
e−2s2/η dx (20)

is a generalized Fisher information [12]. Physical importance of I ′ is given by the fact that
it takes into account not only the form of the probability distribution given by ρ (or s2) but
also an analogous distribution given by j (or s1 and s2). It can be shown that the generalized
Fisher information I ′ is related to the kinetic energy in quantum mechanics [12]. It is evident
uncertainty relation for I ′ following from equations (10) and (19)

〈x2〉I ′ � 1 (21)

is closely related to the Heisenberg uncertainty relations [12, 13, 15].

6. Hamilton’s principle

To derive Hamilton’s principle we require the relativistic invariance of the generalized
spacetime Fisher information. A similar approach has been successfully used also for the
derivation of the Klein–Gordon and Dirac equations [7–10, 12].

The relativistically invariant spacetime generalization of the Fisher information I ′ has the
form

J ′ = J ′
1 + J ′

2, (22)

where the first term

J ′
1 = 4

η2

1

t2 − t1

∫ t2

t1

∫ [
1

c2

(
∂s1

∂t

)2

−
(

∂s1

∂x

)2 ]
e−2s2/η dx dt (23)

depends on the motion in space described by s1 and the form of the probability distribution
ρ = exp(−2s2/η) and the second term

J ′
2 = 4

η2

1

t2 − t1

∫ t2

t1

∫ [
1

c2

(
∂s2

∂t

)2

−
(

∂s2

∂x

)2 ]
e−2s2/η dx dt (24)

depends on s2 only. Here, 1/(t2 − t1) is a normalization factor with respect to time and c is the
speed of light. Time integration is performed from t1 when the initial conditions were given
(first measurement or preparation of the system in the state given by ρ(x, t1) and j (x, t1)). At
times t ∈ (t1, t2) no measurement is performed. At t2, the system interacts with the measuring
apparatus again (second measurement).

The condition that J ′ has the same value in all physically equivalent inertial systems can
be written in the variational form

δJ ′ = 0. (25)

Physically relevant functions s1 = s1(x, t) and s2 = s2(x, t) are the only such functions s1

and s2 that obey this condition.
To get the non-relativistic approximation to J ′ we write s1 in the form

s1 = m0c
2t + s̄1, (26)

where m0 is the rest mass of the system and s̄1 = s̄1(x, t) is a real function. It leads to(
∂s1

∂t

)2

=
(

m0c
2 +

∂s̄1

∂t

)2

= m2
0c

4 + 2m0c
2 ∂s̄1

∂t
+

(
∂s̄1

∂t

)2

. (27)
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Now, we assume that the term ∂s̄1/∂t is small with respect to the rest energy m0c
2 and the last

term in equation (27) can be neglected. Then we obtain

J ′
1 = 4m2

0c
2

η2
+

4

η2

1

t2 − t1

∫ t2

t1

∫ [
2m0

∂s̄1

∂t
−

(
∂s̄1

∂x

)2]
e−2s2/η dx dt. (28)

Further, we take into consideration that s1 does not appear in equation (6) for ρ. It shows
that modifying s1 it is possible to introduce additional functions or ‘potentials’ into the theory
that can describe external fields in which the system moves. Therefore, in agreement with
physical experience we can introduce an external potential V (x, t) by the transition

∂s̄1

∂t
→ ∂s̄1

∂t
+ V (29)

analogous to similar prescriptions known from classical and quantum mechanics [7–15]. It
leads to

J ′
1 = 4m2

0c
2

η2
+

8m0

η2(t2 − t1)

∫ t2

t1

∫ [
∂s̄1

∂t
+ V − 1

2m0

(
∂s̄1

∂x

)2]
e−2s2/η dx dt. (30)

Now, we assume that the probability density ρ(x, t) is close to zero everywhere except for
a very narrow region along a classical trajectory xcl = xcl(t). In such a case, the probability
density ρ can be approximated by the δ-function at the point xcl

ρ(x, t) = e−2s2/η ≈ δ(x − xcl). (31)

This classical limit can also be obtained for η → 0+ corresponding to the limit h̄ → 0+ known
from transition from quantum to classical mechanics (see e.g. [20, 21]). Then we get

J ′
1 = 4m2

0c
2

η2
+

8m0

η2(t2 − t1)

{
S(xcl, t)

∣∣∣∣
t2

t1

+
∫ t2

t1

[
V (xcl, t) − 1

2m0

(
∂S(xcl, t)

∂xcl

)2]
dt

}
, (32)

where S denotes the function s̄1 in the classical limit. Analogously, we can calculate

J ′
2 = 4

η2

1

t2 − t1

∫ t2

t1

[
1

c2

(
∂s2(xcl, t)

∂t

)2

−
(

∂s2(xcl, t)

∂xcl

)2 ]
dt. (33)

Taking into consideration that the function δ(x − xcl) is even with respect to xcl we see that its
spatial derivative at this point must equal zero. Similarly, the form of the function δ(x − xcl)

does not change in time and its time derivative equals zero. Therefore, taking into account
the form of derivatives of ρ following from equation (31), we can assume that J ′

2 does not
contribute to δJ ′ in the limit of classical mechanics.

Finally, taking into consideration that the variations of S(xcl, t) at the points t1 and t2
(the first and second measurement) equal zero we can write the condition (25) in terms of the
integral in equation (32)

δ

∫ t2

t1

[
1

2m0

(
∂S(xcl, t)

∂xcl

)2

− V (xcl, t)

]
dt = 0. (34)

Denoting

L = 1

2m0

(
∂S(xcl, t)

∂xcl

)2

− V (xcl, t) (35)

and taking into account that ∂S/∂x equals momentum p in classical mechanics [2–5, 15] we
can write the condition for the trajectory xcl = xcl(t) in the form of Hamilton’s principle

δ

∫ t2

t1

L dt = 0, (36)

where

L = p2

2m0
− V. (37)
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7. Conclusions

We have seen that Hamilton’s principle can be obtained in a few steps. In the first step, results
of measurement of the coordinates are described by means of the probability density ρ. In
the next step, the description of the motion in space is included by means of the probability
density current j . The last two steps make it possible to derive the ‘uncertainty’ relation
for 〈x2〉 and the generalized spatial Fisher information I ′. To derive Hamilton’s principle,
the relativistically invariant generalized spacetime Fisher information J ′ analogous to I ′ is
defined. Then, the condition that J ′ has the same value in all physically equivalent inertial
systems is written in the variational form. The variational condition followed by the transition
to the non-relativistic classical limit leads finally to Hamilton’s principle.

In summary, our discussion shows that Hamilton’s principle has its origin in the statistical
description of results of measurement of the coordinates and the motion in space by means
of the probability density ρ and probability density current j , respectively, and relativistic
invariance of the corresponding generalized spacetime Fisher information J ′.
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